(8) E. A. Baker, J. T. Martin, and A. P. Wilson, Ann. Appl. Biol., 68, 203(1966).

ACKNOWLEDGMENTS AND ADDRESSES

Received November 19, 1969, from the Department of Pharmacognosy, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455 Accepted for publication January 19, 1970.

This work was supported by a grant from the U. S. National Institutes of Health (GM 16241-02) and was reported at the XI International Botanical Congress, Seattle, Wash., Aug. 1969.

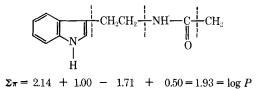
The authors thank Dr. Martin and Mr. Cabanillas of the U. S. Department of Agriculture, Federal Experiment Station, Puerto Rico, for the supply of seeds of *Dioscorea* species.

* Department of Botany, University of Baroda, Borada, India.

Role of Hydrophobic Interactions in Enzyme Inhibition by Drugs

ERIC J. LIEN, MEHDI HUSSAIN*, and GEORGE L. TONG[†]

Abstract \Box The role of hydrophobic interactions in inhibiting the relatively specific enzymatic reactions of five enzyme systems by series of congeneric drugs has been illustrated by the use of substituent constants and regression analysis. The inhibition of lipoxygenase by alcohols, the inhibition of D-amino acid oxidase by maleimides, and the inhibition of hydroxyindole-o-methyltransferase by N-acyltryptamines are found to be linearly dependent on the lipohydrophilic character of the inhibitors (log P or π). The inhibition of carbonic anhydrase by sulfonamides is found to be linearly dependent on the log P and Hammett's σ constant. For monoamine oxidase inhibition by substituted β -carbolines, a parabolic equation of log P gives the most significant correlation. The ideal lipohydrophilic character (log P_0) for maximum inhibition is found to be 2.74.


Keyphrases Enzyme inhibitory activity—hydrophobic interactions, drugs Hydrophobic interactions, drugs—enzyme inhibitory activity Physicochemical constants, enzyme inhibition correlation

In recent years much effort has been focused on elucidation of weak intermolecular forces in biological systems (1), especially on the importance of hydrophobic interactions (2-6). Various experimental methods have been used to estimate the hydrophobic bonding tendency of drug molecules, such as partitioning and chromatographic methods (3, 7). Organic solvents capable of forming hydrogen bonds (e.g., alcohols and esters) appear to give better correlations than hydrocarbons (8). The purpose of this paper is to correlate quantitatively enzyme inhibitory activity with the tendency of hydrophobic interactions of series of drugs, as measured by the partition coefficient of 1-octanol-water. It is hoped that this work may shed some light on the intermolecular forces involved in enzyme inhibition and provide some clues in designing new enzyme inhibitors.

METHOD

The biological data given in Table I are taken from the literature (4, 9–12). The Hammett's sigma constants (σ) are from the compilation of Jaffé (13) unless otherwise stated. The log *P* values are either experimentally determined or calculated from the π constants

(14, 15) of Hansch. For example, the log P of N-acetyltryptamine is calculated as follows:

The steric constants, E_s , are taken from Leffler and Grunwald (16). The equations listed in Table II are derived *via* the method of least squares using an IBM 360/65 computer. The inhibition constant K_I , $k' = (k_I/K_I)$, or the concentration of an inhibitor giving 50% inhibition of the enzyme (I_{50}) is converted to the molar basis, and pK_I , log k', or log $1/I_{50}$ is used as a measure of the inhibitory activity.

RESULTS

The equations correlating enzyme inhibition with the physicochemical constants are summarized in Table II, where n is the number of data points used in the analysis, r is the correlation coefficient, and s is the standard deviation.

In the inhibition of lipoxygenase by monohydric alcohols, the relative inhibitory activity is mainly determined by the lipohydrophilic character (log P). More than 98% ($r^2 = 0.983$) of the variance in the data can be accounted for by the simple linear equation (Eq. 1a). Equation 1b, derived by Mitsuda *et al.* (4), gives a slightly lower correlation coefficient, presumably due to the slightly different log P values used.

For the carbonic anhydrase inhibition by sulfonamides, by comparing Eq. 2a with Eq. 2b one can see that the electronic term σ is slightly more important than the log P term. The positive coefficient associated with σ indicates that electron-withdrawing groups will increase the inhibitory activity. By using both terms simultaneously, a much better correlation is obtained (Eq. 2c). The log P term in Eq. 2c is significant at 97.5-percentile level, as indicated by an F-test ($F_{1,16} = 7.2$; $F_{1,15\ 0.975} = 6.2$).

The π -constant alone gives almost perfect correlation for inhibition of D-amino acid oxidase by N-alkylmaleimides (Eqs. 3b and 3c). By using π and σ terms together, high correlation is obtained for the N-aryl as well as N-alkyl derivatives. The σ term in Eq. 3a is highly significant ($F_{1.5} = 111$; $F_{1.5 \ 0.995} = 63.6$).

For the inhibition of hydroxyindole-o-methyltransferase by N-acyltryptamines, log P alone gives fairly good correlation (Eq. 4a). By deleting three molecules with deviation greater than 2s, a better

				· · · · · · · · · · · · · · · · · · ·		
Calcd.ª	<i>pK</i> _I	Found ^b		R—C log I		R—
$\begin{array}{c} -0.30\\ 0.18\\ 0.46\\ 0.65\\ 0.72\\ 0.91\\ 0.94\\ 1.13\\ 1.39\\ 1.61\\ 2.08\\ 2.56\end{array}$		$\begin{array}{c} -0.18\\ 0.18\\ 0.37\\ 0.68\\ 0.49\\ 0.86\\ 1.13\\ 1.15\\ 1.34\\ 1.61\\ 2.10\\ 2.60\end{array}$	R	-0. -0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	16 14 34 51 54 84 11 34 34	$CH_{3} - C_{2}H_{5} - iso-C_{3}H_{7} - n-C_{3}H_{7} - n-C_{3}H_{7} - iso-C_{3}H_{9} - iso-C_{4}H_{9} - iso-C_{4}H_{9} - n-C_{4}H_{9} - n-C_{4}H_{9} - n-C_{5}H_{11} - n-c_{7}H_{15} - n-c_{7$
$\overline{\operatorname{Calcd}_{d}}^{pK}$	$I_I (\log 1/K_I)$		les Dí			D
4.72 4.53 5.15 5.38 5.47 5.39 5.78 5.86 5.92 6.07	Found 4.96 4.60 5.30 5.50 5.22 5.13 5.96 5.96 5.92 5.89		$\log P^{f}$ -0.28 -0.78 0.83 0.82 0.31 1.01 1.33 1.07 -0.06		$ \begin{array}{c} \sigma^{\sigma} \\ -0.59 \\ -0.66 \\ -0.27 \\ -0.17 \\ -0.07 \\ 0.00 \\ 0.23 \\ 0.23 \\ 0.37 \\ 0.87 \\ \end{array} $	$\begin{array}{c} R\\ p-CH_{3}NH\\ p-NH_{2}\\ p-CH_{3}O\\ p-CH_{3}\\ m-CH_{3}\\ H\\ p-Cl\\ p-Br\\ m-Cl\\ p-CH_{3}C\\ \\ \end{array}$
5.89 6.05 6.15 6.22 6.44 6.80 5.45 5.73 5.82	6.19 6.26 6.52 6.60 6.66 4.92 5.62 5.46		$\begin{array}{c} -0.01 \\ 0.42 \\ 0.55 \\ 1.77 \\ 1.12 \\ 1.62 \\ 0.99 \\ 0.90 \\ 0.08 \end{array}$		$\begin{array}{c} 0.65\\ 0.71\\ 0.78\\ 0.50\\ 0.94\\ 1.20\\ -0.14\\ 0.20\\ 0.55 \end{array}$	$\begin{array}{c} O \\ p\text{-}CN \\ m\text{-}NO_2 \\ p\text{-}NO_2 \\ 3,4\text{-}Cl_2 \\ 3\text{-}NO_2-4Cl \\ 3\text{-}CF_34Cl \\ 2\text{-}CH_3 \\ 2\text{-}Cl \\ 2\text{-}NO_2 \end{array}$
$\log k' (\log k_1/K_1)$						
pH 7. Calcd. ^h 1.44 1.84 2.04 2.24 2.24 2.44 2.64 2.64 2.64 2.72	0 Found ⁴ 1.43 1.86 2.04 2.23 2.45 2.61 2.51 ⁴ 2.85 ⁴	pH 7.5 Calcd. ⁱ 1.89 2.27 2.46 2.65 2.84 3.03 —	Found ⁱ 1.88 2.27 2.46 2.64 2.87 3.01 ^m ^m	$ \pi 1.00 2.00 2.50 3.00 3.50 4.00 2.13 2.32 } $		$\begin{array}{c} R - \\ C_2 H_5 - \\ n - C_4 H_9 - \\ n - C_5 H_{11} - \\ n - C_6 H_{13} - \\ n - C_7 H_{15} - \\ n - C_8 H_{17} - \\ C_8 H_5 - \\ C_8 H_5 - \\ C_8 H_5 - \\ (NO_2)_2 - Ph - \end{array}$
$\begin{array}{c} \mathbf{R}_{1} \\ \mathbf{R}_{2} \\ \mathbf{R}_{3} \\ \mathbf{H} \\ \mathbf{R}_{3} \\ \mathbf{R}_{3}$						
Log Calcd. ⁿ 2.65 3.93 3.63 4.01 4.50 4.02 4.35 3.68 3.64 3.71 3.72 3.99 4.09 4.05 4.41	1/I ₅₀	$\begin{array}{c} \log P \\ 1.93 \\ 4.06 \\ 3.56 \\ 4.19 \\ 5.00 \\ 4.21 \\ 4.76 \\ 3.64 \\ 3.57 \\ 3.69 \\ 3.71 \\ 4.15 \\ 4.32 \\ 4.26 \\ 4.85 \end{array}$	а	R ₁ H H F Br H H H H H H H	$\begin{array}{c} R_2 \\ CH_3 \\ C_6H_5 CH_2 \\ C_6H_5 \\ C_6H_5 CH_2 \\ C_6H_5 CH_2 \\ C_6H_5 CH_2 \\ P -F C_6H_4 CH_2 \\ P - CI C_6H_4 \\ P -F C_6H_4 \\ P -F C_6H_4 \\ P -F C_6H_4 \\ P -F C_6H_4 \\ P -CI \\ P -C$	R₅ H H H H H H H

866 Journal of Pharmaceutical Sciences

Calcd. ⁿ	1/1 ₅₀	log P	R1	R ₂	R₃—
4.51 3.75	4.70 3.70	5.02 3.76	H— H—	3,4Cl ₂ C ₆ H ₃ 3,4,5(CH ₃ O) ₃	Н— Н—
3.71 4.20 4.59 5.08 4.11 4.05 4.54	3.77 4.15 4.66 5.30 3.57 ^p 3.42 ^p 3.96 ^p	3.69 4.50 5.15 5.96 4.36 4.26 5.08	F Br Br H H H	$\begin{array}{c} C_{6}H_{2}-\\ C_{6}H_{3}-\\ C_{6}H_{5}-\\ 3,4-Cl_{2}-C_{6}H_{3}-\\ 3,4-Cl_{2}-C_{6}H_{3}-\\ C_{6}H_{5}CH_{2}-\\ 3,4,5-(CH_{3}O)_{3}-\\ C_{6}H_{2}CH_{2}-\\ 3,5Cl_{2}-C_{6}H_{3}-\\ \end{array}$	H— H— H— H— CH₃— H—
Calcd. ^{<i>q</i>} 4.38 4.65 4.59 4.19 3.45 2.84 3.71 3.68 2.10 2.18 2.59	1/150 Foundr 4.54 5.00 4.32 3.82 3.85 2.74 3.40 3.82 3.82 3.32* 3.96* 4.47*		log P 2.08 2.58 3.08 3.58 4.08 4.38 1.55 1.53 2.42 1.92 1.42	$ \begin{array}{c} \sigma \\ 0.00 \\ -0.17 \\ -0.15 \\ -0.13 \\ -0.16 \\ -0.23 \\ 0.06 \\ 0.52 \\ -0.13 \\ -0.07 \\ 0.06 \\ \end{array} $	$\begin{array}{c} R \\ H - \\ CH_3 - \\ C_2 H_5 - \\ n - C_3 H_7 - \\ n - C_4 H_9 - \\ i so - C_5 H_{11} - \\ - CO_4 H_9 - \\ - CO_4 H_9 - \\ - CO_4 H_9 - \\ - CH_2 CH_2 CH_9 - \\ - CH_2 CH_9 CH_9 - \\ - CH_9 $

	Table II—Equations	Correlating Enzyr	ne Inhibition with P	hysicochemical	Constants
--	--------------------	-------------------	----------------------	----------------	-----------

Enzyme	Inhibitors	Equation	n	r	S	Eq. No.	log <i>P</i> ₀, (95% c-l.)
Lipoxygenase	ROH	$pK_I = 0.954 \log P + 0.329$	12	0.992	0.110	1 <i>a</i>	
Carbonic anhydrase	Sulfonamides	$pK_I = 0.944 \log P + 0.830$ $pK_I = 0.553 \log P + 5.378$	12 19	0.984 0.609	0.492	1bª 2a	
unny di use		$pK_I = 1.026 \sigma + 5.438$ $pK_I = 0.259 \log P + 0.886 \sigma +$	19	0.886	0.288	2b	
D-Amino acid	Maleimides	5.314 $\log k' = 0.339 \pi + 4.705 \sigma +$	19	0.923	0.247	2 <i>c</i>	
oxidase	(at pH 7.0)	1.745	8	0.988	0.085	3a	
	(at pH 7, 5)	$\log k' = 0.395 \pi + 1.051 \\ \log k' = 0.382 \pi + 1.503$	6 6	0.999 0.999	0.018 0.019	3b 3c	
Hydroxyindole- o-methyltrans- ferase	N-Acyltryp- tamines	$\log \frac{1}{I_{50}} = 0.561 \log P + 1.590$	24	0.870	0.255	30 4a	
101430		$\log 1/I_{50} = 0.601 \log P + 1.491$	21	0.948	0.170	4 <i>b</i>	
Monoamine oxidase	β -Carbolines	$\log 1/I_{50} = 0.675 E_s + 4.017$	11	0.509	0.578	5a	
		$\log \frac{1}{I_{50}} = -0.216 \log P + 4.494 \log \frac{1}{I_{50}} = -0.373 (\log P)^2 +$	11	0.355	0.628	5b	
		$1.907 \log P + 1.864$	11	0.604	0.568	5c	2.56 (∞)
		$\log \frac{1}{I_{50}} = 0.454 E_s - 0.304 (\log P)^2 + 1.564 \log P$					
		$(\log 1)^2 + 1.304 \log 1 + 2.283$	11	0.648	0.556	5d	2.57
		$\log 1/I_{50} = 0.635 E_s + 3.983$	8	0.507	0.649	5e	· ·
		$\log \frac{1}{I_{50}} = -0.215 \log P + 4.550 \\ \log \frac{1}{I_{50}} = -0.679 (\log P)^2 +$	8	0.341	0.707	5f	
		$3.719 \log P - 0.422$	8	0.900	0.360	5g	2.74 (2.32-2.98)
		$ \log \frac{1}{I_{50}} = 0.140 E_s - 0.645 (\log P)^2 + 3.544 \log P - 0.227 $	8	0.905	0.390	5h	2.75
							(1.99-3.13)

^a From Reference 4.

correlation is obtained (r = 0.948 for Eq. 4b). The authors also explored the role of the electronic parameter. For the 15 molecules with X-Ar as R₂ (Table I), neither the σ of X nor the σ of R₁ gives significant improvement in correlation. Of the three poorly predicted molecules, two may be due to steric hindrance, one with the methyl group as R₃, and the other with the 3,4,5-trimethoxybenzyl group as R₂. The fact that the observed activities of these three compounds are lower than the predicted values supports this argument. The third molecule has the 3,5-dichlorophenyl group as R₂. It is difficult to explain why this is poorly predicted since the one with the 3,4dichlorophenyl group as R₂ is slightly more active than predicted.

For the inhibition of monoamine oxidase by 9-substituted β carbolines, Taft's steric constant, Es, gives somewhat better correlation than log P (Eq. 5a versus 5b). However, the correlation coefficients are too low to be considered significant. Even when a $(\log P)^2$ term is included, the correlation coefficient is still below 0.70 (Eqs. 5c and 5d). When three compounds with an alcoholic OH group are excluded, a parabolic equation of log P gives fairly good correlation (Eq. 5g). The $(\log P)^2$ term in Eq. 5g is significant at the 99-percentile level $(F_{1,5} = 18.2; F_{1,5} = 0.99 = 16.3)$. For the eight compounds without an OH group, neither the linear equation of E_s nor that of log P gives a good correlation (Eqs. 5e and 5f); the addition of the E_s term to the parabolic equation does not improve the correlation significantly (Eq. 5h versus 5g, $F_{1,4} = 0.21$). It is felt that an active function like an OH group may have its own intrinsic activity not possessed by the other inert substituents. For example, the H of the OH group might form a hydrogen bond with an atom having unshared electron pair(s). The fact that the activities of the compounds with the OH group are appreciably higher than what are predicted from Eq. 5g is in accordance with this explanation. The optimum lipohydrophilic character $(\log P_0)$ for the maximum inhibition is derived by setting $(d \log 1/I_{50})/(d \log P) = 0$ (17–19). This is the apex of the parabolic curve. Once this $\log P_0$ is obtained, it may serve as a useful guidepost in designing new inhibitors.

The importance of the hydrophobic interactions for the enzyme inhibition is clearly shown by the good correlations obtained by using log P or π with or without a σ term.

DISCUSSION

From the correlations obtained, it is clear that in the five enzyme systems examined the lipohydrophilic character of the inhibitors plays a very important role in inhibition. The rather nonspecific hydrophobic interactions may be involved in two different ways: (a) adsorption and desorption on the macromolecule, since all proteins including enzymes contain 20-45% of amino acids with nonpolar side chains (20), and (b) inducing proper fit at the active site or the allosteric site (21) by the association of the nonpolar groups in the presence of water molecules. At present, not enough data are available to differentiate which of these two is more important.

It will be interesting to apply the method used in this study to other systems where drugs exert their activity by enzyme inhibition, such as choline esterase inhibitors and histidine decarboxylase inhibitors.

REFERENCES

(1) J. D. Watson, "Molecular Biology of the Gene," W. A. Benjamin, New York, N. Y., 1965, chap. 4.

(2) G. Némethy, Angew. Chem. 6, 195(1967).

(3) C. Hansch, A. R. Steward, J. Iwasa, and E. Deutsch, Mol. Pharmacol., 1, 205(1965).

(4) H. Mitsuda, K. Yasumoto, and A. Yamamoto, Arch. Biochem. Biophys., 118, 664(1967).

(5) Eric J. Lien, "The Role of Hydrophobic Bonding in Fungitoxicity," presented at the Symposium on Fungitoxic Action, the 61st Annual Meeting of American Phytopathological Society, Spokane, Wash., Aug. 1969.

(6) R. Franke, Mol. Pharmacol., 5, 604(1969).

(7) C. B. C. Boyce and B. V. Milborrow, Nature, 208, 537 (1965).

(8) D. E. Burton, K. Clarkae, and G. W. Gray, J. Chem. Soc., 1964, 1314.

(9) N. Kakeye, M. Aoki, A. Kamada, and N. Yata, Chem. Pharm. Bull., 17, 1010(1969).

(10) M. L. Fonda and B. B. Anderson, J. Biol. Chem., 244, 666 (1969).

(11) B. T. Ho, W. M. McIsaac, and L. W. Tansey, J. Pharm. Sci., 58, 563(1969).

(12) B. T. Ho, W. M. McIsaac, L. W. Tansey, and K. E. Walker, *ibid.*, **58**, 219(1969).

(13) H. H. Jaffé, Chem. Rev., 53, 191(1953).

(14) T. Fujita, J. Iwasa, and C. Hansch, J. Amer. Chem. Soc., 86, 5175(1964).

(15) J. Iwasa, T. Fujita, and C. Hansch, J. Med. Chem., 8, 150 (1964).

(16) J. E. Leffler and E. Grunwald, "Rates and Equilibria of Organic Reactions," Wiley, New York, N. Y., 1963, p. 228.

(17) C. Hansch, E. J. Lien, and F. Helmer, Arch. Biochem. Biophys., 128, 319(1968).

(18) E. J. Lien, Amer. J. Pharm. Educ., 33, 368(1969).

(19) E. J. Lien, J. Agr. Food Chem., 17, 1265(1969).

(20) W. Kauzmann, "Advance in Protein Chemistry," vol. 1, Academic, New York, N. Y., 1959, p. 1.

(21) D. E. Koshland, Jr., Cold Spring Harbor Symp. Quant. Biol., 28, 473(1963).

ACKNOWLEDGMENTS AND ADDRESSES

Received October 23, 1969, from the School of Pharmacy, University of Southern California, University Park, Los Angeles, CA 90007

Accepted for publication January 12, 1970.

The abstract of this paper was presented to the Medicinal Chemistry Section, APHA Academy of Pharmaceutical Sciences, Washington, D. C. meeting, April 1970.

* R. M. and J. L. Converse Fund Fellow.

† NSF Undergraduate Research Participant, Summer 1969, GY-5829.

The authors thank the Computer Science Laboratories, University of Southern California, for computing service.